Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38535675

RESUMO

Information about the influence of surface charges on nanoplastics (NPLs) transport in porous media, the influence of NPL concentrations on porous media retention capacities, and changes in porous media adsorption capacities in the presence of natural water components are still scarce. In this study, laboratory column experiments are conducted to investigate the transport behavior of positively charged amidine polystyrene (PS) latex NPLs and negatively charged sulfate PS latex NPLs in quartz sand columns saturated with ultrapure water and Geneva Lake water, respectively. Results obtained for ultrapure water show that amidine PS latex NPLs have more affinity for negatively charged sand surfaces than sulfate PS latex NPLs because of the presence of attractive electrical forces. As for the Geneva Lake water, under natural conditions, both NPL types and sand are negatively charged. Therefore, the presence of repulsion forces reduces NPL's affinity for sand surfaces. The calculated adsorption capacities of sand grains for the removal of both types of NPLs from both types of water are oscillating around 0.008 and 0.004 mg g-1 for NPL concentrations of 100 and 500 mg L-1, respectively. SEM micrography shows individual NPLs or aggregates attached to the sand and confirms the limited role of the adsorption process in NPL retention. The important NPL retention, especially in the case of negatively charged NPLs, in Geneva Lake water-saturated columns is related to heteroaggregate formation and their further straining inside narrow pores. The presence of DOM and metal cations is then crucial to trigger the aggregation process and NPL retention.

2.
Environ Sci Pollut Res Int ; 31(9): 13512-13522, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38253831

RESUMO

Microplastics (MPs) have been observed in the oceans, fresh waters, karstic water and remote water bodies. However, little is known on groundwater contamination, which is a natural resource of utmost importance for millions of people and is often perceived as a reliable source of water. Moreover, nanofiltration is perceived as a reliable technology to remove contaminants from water. In this study, large sample volumes of a silty-sandy gravel aquifer and the corresponding nanofiltered water were analysed for the presence of MPs (> 20 µm) using Fourier transform infrared (FTIR) microscopy. Concentration in ground water was 8 ± 7 MPs/m3 and increased to 36 ± 11 MPs/m3 in nanofiltered water. All MPs had a maximum Ferret diameter lower than 500 µm. Size distribution of MPs was towards the small size class (20-50 µm). In groundwater, 33% of MPs were detected in the smallest size class (20-50 µm) and 67% in the 50-100-µm-size class. In comparison, around 52% of MPs in nanofiltered water were observed in the 20-50 µm size class. Moreover, 33% of the MPs observed in nanofiltered water were in the 50-100 µm size class and 15% in the 100-500-µm-size class. From a chemical point of view, different plastic polymers were identified in groundwater and in nanofiltered water, such as polypropylene (PP), polyvinyl chloride (PVC), ethylene (vinyl acetate) copolymer (EVA), polyethylene (PE), polyethylene terephthalate (PET), polymethyl methacrylate (PMMA) and other polymer materials (such as polystyrene-based copolymers, vinyl-based copolymers). Fibres were observed in all samples, but only a small number of fibres (near 1%) were identified as PP synthetic fibres in nanofiltered water. Furthermore, no clear difference of fibre concentrations was observed between groundwater (232 ± 127 fibres/m3) and nanofiltered water (247 ± 118 fibres/m3). Groundwater had extremely low levels of microplastics, and although the nanofiltration effectively removes suspended particulate matter, it slightly contaminates the filtered water with MPs.


Assuntos
Água Subterrânea , Polivinil , Poluentes Químicos da Água , Humanos , Animais , Microplásticos , Plásticos , Suíça , Furões , Água , Polietileno , Polímeros , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...